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1 Introduction

The purpose of this article is to lay the foundation for a p–adic Floer cohomology theory. The meaning of
this terminology is encapsulated by the series of results and conjectures that follow. Roughly speaking, the
author views p–adic Floer theory as a device to better understand arithmetic invariants coming from certain
classes of fiber products (e.g Selmer groups) that naturally arise in Iwasawa theory and p–adic Hodge theory.
In a different vein, we also expect p–adic methods to also be useful when applied to classical Floer homology
theories, especially knot Floer homology: see conjecture 5. Minhyong Kim’s recent paper on Arithmetic
Gauge Theory [14] includes a promising route towards the former. For brevity and coherence with our dis-
cussion of classical Floer theories, we summarize section 11 of Kim’s paper below: see also section 2.1.

Let K be a number field with ring of integers OK , and suppose R is a sheaf on X := SpecOK . For
a closed point v ∈ X corresponding to the prime pv ⊂ OK , define Ov = lim

←
OK/pnv , Kv = Frac(Ov),

Xv = SpecOv, and Kv = SpecKv. Let S be a finite collection of closed points in X and let XS denote the
scheme X\S = SpecOK [S−1]. Fix an algebraic closure K (resp. Kv) of K (resp. Kv) and let πS (resp. πv)
denote πét1 (XS) (resp. Gal(Kv/K)). Consider the moduli spaces M(XS , R), M(Kv, R), and M(Xv, R) of
principal R–bundles over XS , Kv, and Xv, respectively, together with the natural restriction maps

M(Xv, R)
∏
v∈SM(Kv, R)

∏
v∈SM(Xv, R)

locS rS (1)

And define
C(X,S;R) :=M(XS , R)×∏

vM(Kv,R)

∏
v

M(Xv, R)

If R is a sheaf of unipotent Qp–algebraic groups, then M(XS , R) ∼= H1
cts(πS , R), M(Kv, R) ∼= H1

ηét
(πv, R),

and

M(Xv, R) ∼=

{
H1
cts(πv/Iv, R

Iv ) v - p
H1
f (πv,Crysv(R)) v | p

Here H∗cts denotes conintuous cohomology, H∗ηét is local cohomology, H∗f is unramified cohomology, Iv is the

inertia subgroup of πv, and Crysv(R) is the maximal πv–equivariant subgroup of R that is Crystalline1. We
drop these subscripts in what follows. Similar identifications ofM(−, R) with moduli spaces of Galois
representations hold when R is a subquotient of GLn(E) for some finite extension of Qp.

In classical Floer theory, R is typically a complex semisimple Lie group (viewed as a constant sheaf),
and the M(−, R) are replaced by the moduli spaces of principal R–bundles with connection over specially
defined submanifolds of an ambient 3–manifold. Under these hypotheses, one realizes the images of locS
and rS as Lagrangian submanifolds of a symplectic manifold: see section 2 for details. Classically, cotangent
bundles are one natural source of symplectic manifolds, and the critical loci of real–valued functions provide
Lagrangian submanifolds. These facts serve to motivate the following Theorem.

1As Kim notes, it is possible to enhance our definitions here using the tools of p–adic Hodge Theory
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Theorem 1 (Kim). Suppose S contains all places dividing a fixed prime p ∈ Z, and assume R is either
a sheaf of unipotent Qp–analytic groups with a continuous π1(XS)–action or a subquotient of GLn(E) for
some finite extension E of Qp. Let T ∗(1)R := L∗(1) oR denote the (Tate) twisted cotangent bundle, where
L is the Lie algebra of R. Then,

1. For any closed point v ∈ X, the tangent space

Tc̃vH
1(πv, T

∗(1)R) ∼= H1(πv, L(cv))
∗ ×H1(πv, L(cv))

has the structure of a symplectic vector space with symplectic form ωv given by

ωv((f, c), (f
′, c′)) = f · c′ − f ′ · c

where · is the inner product structure on Tc̃v , c̃v is a cocylce of πv with values in T ∗(1)R, cv is its image
in R, and L(cv) is L with the πv-action twisted by the adjoint action of cv. In particular, summing
over v ∈ S gives a symplectic structure on∏

v∈S

[
H1(πv, L(cv))

∗ ×H1(πv, L(cv))
]

Hence, under a suitable geometrization of the underlying spaces,∏
v∈S

H1(πv, T
∗(1)R)

has the structure of a symplectic p–adic analytic variety. Moreover, if c̃v is crystalline or unramified
for each v ∈ S, then∏

v∈S
v-p

[
H1(πv, L(cv)

∗(1))×H1(πv, L(cv))
]
×
∏
v∈S
v|p

[
H1(πv/Iv, (L(cv)

∗(1))Iv )×H1(πv/Iv, (L(cv))
Iv )
]

is a Lagrangian subvariety of
∏
v∈S

[
H1(πv, L(cv)

∗(1))×H1(πv, L(cv))
]

2. The image of H1(πS , T
∗(1)R) under the locatlisation map

locS : H1(πS , T
∗(1)R)→

∏
v∈S

H1(πv, T
∗(1)R)

is a Lagrangian subvariety. In particular, the intersection

C(X,S;T ∗(1)R) =M(XS , T ∗(1)R)×∏
vM(Kv,T∗(1)R)

∏
v

M(Xv, T
∗(1)R)

can be regarded as an “arithmetic Lagrangian intersection.”

We take as fact that the natural projection mapH1(πS , T
∗(1)R)→ H1(πS , R) is split. Therefore, C(X,S;T ∗(1)R)

admits a split projection to

C(X,S;R) :=M(XS , R)×∏
vM(Kv,R)

∏
v

M(Xv, R)

which should also be regarded as a Qp–analytic Lagrangian intersection.

Conjecture 1. There exists canonical étale perverse sheaves of vanishing cycles P•
T∗(1)R and P•

R on

C(X,S;T ∗(1)R) and C(X,S;R), respectively. In particular, the hypercohomology groups H(P•) give an
“arithmetic Floer–cohomological” invariant of

∏
v∈SM(Kv, R).
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We expect Theorem 1 to hold more generally if we replace X with an arbitrary variety over K. This next
example illustrates the significance of the intersections C(X,S;R) in arithmetic geometry (a lecture series
at AWS 2018 was devoted to their study), and is of particular interest to the author.

Example 1. Let A denote an elliptic curve over K with good reduction at all primes v | p. and let R denote
the Lisse sheaf associated to Vp := Tp(A) ⊗Zp Qp, where Tp(A) is the Tate module. Suppose S contains
{v : v | p} ∪ {p : A has bad reduction at p}. If v ∈ S\{v : v | p}, then

H1
f (πv, Vp) = H1(πv/Iv, V

Iv
p )

If v | p, then H1
f (πv, Vp) ⊂ H1(πv, Vp) is the subspace of crystalline torsors. Then the fiber product in

diagram 1 is the p∞–Selmer group of A tensored with Qp:

Sel(A,Qp) = H1(πS , Vp)×∏
v∈S H

1(πv,Vp)

∏
v∈S

H1
f (πv, Vp)

The finiteness conjecture for the p∞–part of the Tate-Shafarevich group of A over F can be reformulated,
using the help of a certain exact sequence [25, Page 6], as follows

Conjecture 2. corankZpSel(A,Zp) = dimQpSel(A,Qp) = rankZA(K)

By definition, corankZpSel(A,Zp) is the Zp–rank of the Pontryagin dual Homcts(Sel(A,Zp),Qp/Zp). This
latter space is interesting to the author from a related point of view: see remark 3. Specifically, Homcts(Q, µp∞)
should be identifiable with the p–adic solenoid. This is one justification for our study of solenoids. The re-
mainder of this section describes a potentially novel route towards understanding relationships between
Selmer groups, elliptic curves, and their L–functions. It also gives additional motivation for our study of
adelic and p–adic solenoids. We begin by recalling a Theorem of Étienne Ghys on the structure of the unit
tangent bundle of the modular surface.

Theorem 2 (Ghys). The unit tangent bundle of the modular surface can be identified with the complement of
the trefoil knot in S3. Under this identification, closed geodesics on H2/PSL2(Z) lift to knots in S3/T (2, 3).

Definition 1. A modular knot is a knot which arises as the lift of some closed geodesic on H2/PSL2(Z) to
its unit tangent bundle.

Let K be a knot in S3 with Alexander polynomial ∆K(t) and let πK = π1(S3\K) denote the fundmental
group of the knot complement. It is easy to show that πabK = πK/[πK , πK ] ∼= Z. For each z ∈ C, ψz denotes
the homomorphism ψz : πK → C that sends a generator τ of πabK to z. The ψz define a linear system V (z)
over XK := S3\K. Mazur [16] observed that

dimCH1(X,V (z)) = Order of vanishing of ∆K at z (2)

Now let Σ = lim
←i

(S1,mi) be a one–dimensional solenoid; that is, an inverse limit of circles with transition

maps S1 [mi]−−−→ S1 define by z 7→ zmi . Without loss of generality we may assume that each mi is a prime
number [6]. If Σ comes with an embedding into S3, then we can view Σ as an infinite cable knot, i.e the
result of cabling the copy of S1 at the (i+1)th-layer, viewed as a knot Ki+1, around Ki with framing ai ∈ Z.
Let Σn denote the cable knot at the nth-layer in the construction of Σ. It is well-known that the Alexander
polynomials of a cable knot is given by the formula

∆Σn =

n∏
i=0

∆Ki(t
ai)

In particular, we can formally define

∆Σ(t) :=

∞∏
i=0

∆Ki(t
ai) (3)
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For each i let Xi,∞ denote the infinite cyclic cover of Xi := S3\Ki. Xi,∞ has deck group Gal(Xi,∞/Xi)
isomorphic to Z generated by τi, hence H1(Xi,∞) inherits a natural action by Z[Gal(Xi,∞/Xi)] ∼= Z[t±1].
Then, up to multiplication by a unit in Z[Gal(Xi,∞/Xi)], one has

∆Ki(t) = det(t · id− τi | H1(Xi,∞))

Substituting the right-hand side into equation 3, one has

∆Σ(t) =

∞∏
i=0

det(tai · id− τi | H1(Xi,∞)) (4)

Since S3\Σ = lim
→

S3\Ki and π1(S3\Σ) = lim
→

π1(S3\Ki) [6], we obtain a well defined linear system V(z) =

lim
→

Vi(z) over S3\Σ, where Vi(z) is the linear system over S3\Ki in equation 2. Note that we cannot expect

an analogue of 2 in terms of singular homology since solenoids are not locally connected. On the upshot,
Čech homology behaves well for pathological spaces.

Conjecture 3. dimCȞ1(S3\Σ,V(z)) = Order of vanishing of ∆Σ at z

Alexander duality gives the isomorphism

Ȟ1(S3\Σ,V(z)) ∼= Ȟ1(Σ,V(z))

So we can phrase conjecture 3 entirely in cohomological terms. The resemblance of solenoidal Alexander
polynomials to Euler products of L–functions of elliptic curves (constructed via Iwasawa modules) is im-
mensely striking: see also [25] and [18, Chapter 11]. However, this formulaic similarity is not enough to
suspect a deep connection between knots and elliptic curves. Theorem 2 provides one link between the two
worlds. Another connection that we shall discuss at a later time, and which naturally ties in the study
of solenoids, is provided via Iwasawa Theory and the work of Scholze and Kucharzyk: see remark 3 and
section 3.

Conjecture 4. Let p be a prime and let A and elliptic curve over Q with good reduction at p. Then there
exists a p–adic solenoid Σp (i.e mi ∈ pZ for all i) such that

1. For each i, the knot Ki at the ith layer of Σp is a modular knot.

2. dimQpSel(A,Qp) = dimCȞ1(S3\Σp,V(1))

Combining conjectures 3 and 4 with the Bloch–Kato and BSD conjectures, one obtains the conjectural string
of equalities

o(L(A, s), 1) = rankZ(A) = dimQpSel(A,Qp) = dimCȞ
1(Σ,V(1)) = o(∆Σ(t), 1)

where o(f(x), y) denotes the order of vanishing of f at x = y. One route towards investigating the right
“half” of the above equalities is to engage in a more thorough study of arithmetic properties of knots2

Given a knot K, recall that for each prime p we can construct the p–adic Alexander polynomail of K as
follows: For p =∞ let X∞ denote the infinite cyclic cover of XK = S3\K corresponding to the kernel of the
map πK → Z. Then ∆K(t) is the characteristic polynomial of the meridian action on the Alexander module
H1(X∞,Z)⊗Q. For finite primes p, define

H1(Xp∞ ,Qp) := H1(Xp∞ ,Z)⊗Qp = lim←−nH1(Xp∞ ,Z/pnZ)

and define ∆K,[p](t) to be the characteristic polynomial of the meridian action on the p–adic Alexander
module H1(Xp∞ ,Qp).

2Whatever that means
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Conjecture 5. Let K be a knot and p ≤ ∞ a prime number. Then for each n ∈ N there exists a bigraded
Zp-module

ĤFK(K)[pn] =
⊕
m,s

ĤFK(K, s)[pn]

such that
∆K,[pn](t) =

∑
m,s

(−1)mtsrankZp(ĤFK(K, s)[pn])

is the reduction modulo pn of the p–adic Alexander polynomial of K.

The gradeded structue in the above Theorem is dictated by the p–adic Maslov grading m [28] and the “Iwa-
sawa grading” s. Since p–adic Alexander polynomials are Iwasawa polynomials, their coeffecients are p–adic

integers. When p = ∞, ĤFK(K)[∞] = ĤFK(K) is the usual knot Floer homolgy, s is the Alexander
grading, and ∆K,[∞](t) = ∆K(t) is the usual Alexander polynomial.

Some remarks...

Remark 1. It is plausible that one may formally define

ĤFK(K)[p∞] =
⊕
m,s

ĤFK(K, s)[p∞]

where each ĤFK(K, s)[p∞] is isomorphic to Zam,sp for some am,s ∈ Zp. While the interpretation of Zam,sp is
unclear, the author suspects a deep relationship with the theory of p–adic framed braids [12, 13], especially
in the context of the solenoid analogue of Alexander’s Theorem 6.

Remark 2. In principle, the first step towards an arithmetic analogue of Floer theory is to establish a
relationship between arithmetic geometry and Morse theory. This MathOverflow post indicates that the
algebraic analogue of Morse theory is the study of vanishing cycles and Lefschetz pencils, which agrees with
our attempt to identify an étale sheaf of vanishing cycles on ultrametric Lagrangian intersections.

Taking inspiration from Witten’s deformation theory [5], we should be able to perturb some p–adic dg
category, using p–adic Hodge theory, into a “Morse category” that admits an A∞ structure in the sense
of Fukaya [20]. In arithmetic geometry one frequently encounters infinite dimensional spaces, so a Floer–
homological veiwpoint would be natural in this framework.

Whilsts attempting the constructions described in the sections that follow, it appears necessary to exploit
the p–adic microlocal deformation theory of [10, 7, 9] as well as the relationship between formal group laws
and complex cobordisms, originally noted by Quillen [23]. Additionally, Witten’s deformation DR Morse
of a complex deRahm complex into a Morse complex [5] reminds the author of Tsuji’s construction of the
syntomic complex Syn from the (log) deRahm complex DR using the theory of Filtered Isocrystals [27]. The
syntomic site on a scheme X is generated by flat, locally complete intersections over X. When X is smooth
over a Henselian discrete valuation ring, then the constant sheaf shifted by dimX + 1 is an étale perverse
sheaf. This gives one of the first hints towards a solution to conjecture 1.

Remark 3. Choose the generic point Kv(ζp∞) := SpecKv(ζp∞) → XS [ζp∞ ]. If Gal(Kv/Kv) is pro-p (which
occurs whenever v | p), then the work of Kucharczyk and Scholze [15, Theorem 1.11] shows there exists a
compact Hausdorff space Yp,Kv such that

πét1 (Kv(ζp∞)) ∼= Gal(Kv/Kv(ζp∞))

and
Hi(Yp,Kv ,Z/pmZ) ∼= Hi(Gal(Kv/Kv(ζp∞)),Z/pmZ)
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Moreover, there exists compact Hausdorff spaces XK and XKv such that the the functor taking a finite
extension E (resp. Ev) of K (resp. Kv) induces an equivalence of categories

{finite extensions of K (resp. Kv)} ≡ {connected finite covers of XK (resp. XKv )}

and so Gal(K/K) ∼= πét1 (XK) (resp. Gal(Kv/Kv) ∼= πét1 (XKv )) [15, Theorem 1.5]. When K is algebraically
closed, XK can be identified with the adelic solenoid A/Q. This further motivates our study of p–adic
solenoids, while also suggesting that one may be able to partially reconcile classical Guage theory and Kim’s
Arithmetic Guage theory under a common topological framework.

Remark 4. As pointed out to me by Kenji Fukaya via email, in order for the notion of p–adic Lagrangian
cohomology to make sense, one first needs to generalize the definition of Lagrangian submanifolds to the
p–adic world. Indeed, Lagrangian submanifolds of an ambient symplectic manifold locally look like the
submanifold Rn of R2n 3. We will make a precise geometric definition at a later time when the situation is
more clear to the author, though the fundamental result is Ostrowski’s Theorem, which states that every
absolute value on Q is equivalent to either the standard Euclidean absolute value or a p–adic one. So the
possible Cauchy–completions of Q are exactly R and {Qp}p: prime. Since R and Qp are isomorphic as sets,
we can view Qp as the set R endowed with an exotic metric. The same philosophy applies to C and Cp.

The structure of this paper is as follows: in section 2 we recall the classical approach to defining Floer
cohomological invariants in low-dimensional topology. In section 2.1 we summarize the justification for
Theorem 1. Section 2.1 begins an informal discussion on p–adic Floer–type homological invariants. Finally,
in section 3 we begin working towards further evidence for conjecture 4.

Some notation

Q denotes the rational numbers, Qp is the Cauchy completion of Q with respect to the p–adic absolute value
|−|p (Q∞ = R and |−|∞ is the usual Archimedian metric), and Cp is the p–adic completion of any fixed
algebraic closure Qp (C∞ = C).

Gp, Ab, Rng, and Sch denote the category of groups, abelian groups, rings, and schemes respectively.

Given a topological space X, Top(X), Ét(X), Zar(X) denote the topological, étale, and Zariski sites of
X, respectively. Sh(X) and Sh∇ indicate the category of sheaves on X and the category of sheaves with
connection on X4.

2 Floer (co)homology

We first recall the general procedure for constructing Floer Homology theories. Since most Floer theories
are either known to or conjectured to arise as special cases of Lagrangian Floer homology, this version is
what we describe here.

Definition 2. Let M be a manifold over R of dimension 2n. An almost complex structure J on M is a
choice of complex structure at each tangent space TmM.

Suppose M is a symplectic manifold with an almost complex structure J , and assume there exists
transversal Lagrangian submanifolds L1 and L2 in M, so C(L1, L2) := L1 ∩ L2 is 0–dimensional. Let

3This fact is stated without proof in this nLab page. However, the author is skeptical since the definitions of a symplectic
manifold and Lagrangian submanifolds provided in every source consulted so far seem to indicate that the definitions should
work over any base field, provided that we replace the word “manifold” with “analytic space” or “rigid–analytic space”.

4Sheaves with connection are automatically locally free.
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C(L1, L2) be the free Z–module generated elements of C(L1, L2). When M is compact, C(L1, L2) is finitely
generated. For general M, C(L1, L2) is called a d–critical locus, which for our purposes can be simply
understood as a divisor of some derived scheme–theoretic object. Specifically,

Definition 3. LetM⊂ AnK be a smooth affine variety over a field K (usually R or C), f :M→ C a regular
function, and define a section Γdf : M → ΩM by x 7→ (x, df(x)). The derived critical locus of f , denoted
DCrit(f), is the derived fiber product

DCrit(f) M

M ΩM

0

Γdf

in DCoh(M); and is given by the differential graded scheme (M,D•, df), where the underlying graded

ring structure is D−i =
∧i

TM , and the differential map df is contraction (interior product) by df .

Lagrangian Floer homology is defined as the homology of the complex (C(L1, L2), ∂), where the differential
∂ counts distinct pairs of gradient flow lines (φ1, φ2) connecting points in C(L1, L2). Explicitly, the φi are
realized as boundary arcs on embedded topological disks, and then ∂ takes the form

∂x =
∑

y∈C(L1,L2)

∗∑
φ∈π2(x,y)

|µ(φ)/R| · y (5)

where π2(x, y) are the isotopy classes of Whitney disks with marked points x and y [c.f definition 6], the
restricted sum Σ∗ counts only those embeddings φ that satisfy some differential equation (e.g Cauchy–
Riemann, Yang–Mills, Seiberg–Witten, etc), and µ(φ)/R is the moduli space of such geometric disks, modulo
scaling5. In the Instanton, Heegaard, and Knot versions of Floer homology, the aforemorentioned differential
equation can be deformed, in a precise sense, into the Cauchy–Riemann equation. In particular, Σ′ counts
pseudoholomorphic Whitney disks. More generally,

Definition 4. A pseudoholomorphic curve in an almost complex manifold X is a map φ : D → X from a
Riemann surface D with complex structure j that satisfies the Cauchy–Riemann differential equation:

J ◦ dφ = dφ ◦ j

This definition can be nâıvely extended to a full subcategory of Sch as follows.

Definition 5. Let X be a scheme that admits a smooth model over R2n and let J be the pullback of
the canonical almost complex structure on R2n to the tangent bundle of Xan, the analytification of X(C),

viewed as a scheme over Cn. A psuedoalgebraic curve in X is a closed embedding D
φ−→ X of a projective

1–dimensional scheme D such that Dan φan−−→ Xan is a pseudo–holomorphic curve.

Definition 6. Let X be a manifold equipped with submanifolds L1 and L2 that intersect at points x and
y. A Whitney disk in (X,L1, L2) is an embedding φ : D → X of a real 2–dimensional disk with two marked
points p and q such that φ(p) = x, φ(q) = y, L1 ∩ ∂(φ(D)) = φ1, and L2 ∩ ∂(φ(D)) = φ2, where φ1 and φ2

indicate the distinct closed hemispheres on ∂D whose endpoints are x and y. The moduli space of Whitney
disks with marked points x and y is denoted π2(x, y) when the choice of L1 and L2 is unambiguous.

Now let X be a compact oriented 3–manifold, R ∈ Sh∇(X), and suppose X = X1 ∪Σ X2 is a Heegaard
splitting of minimal genus. We also fix a basepoint ζ ∈ Σ. LetM(−, R) (resp. M[(−, R)) denote the moduli
space of R–bundles (resp. flat R–bundles) with connection, and consider the natural restriction maps

M∗(X1, R) M∗(Σ, R) M∗(X2, R)
r∗1 r∗2 (6)

5To motivate the reduction mod scaling, recall that all Riemann surfaces of genus g > 0 admit a “pants decomposition” and
the pair-of-pants factors are uniquely determined by the real–valued radius of the disk bounded by any one of the pant–legs
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where ∗ ∈ {∅, [}. It is useful to alter the minimal Heegaard splitting by gluing a torus T 2 to Σ along a closed
disk neighborhood of ζ to obtain a Heegaard Splitting X = X1(1) ∪Σ(1) X2(1) of higher genus. One then
considers the moduli spaces of twisted ∗-R–connections, denoted M∗o(−, R): see [1, §2] for definitions. In
this situation there are also natural restriction maps:

M∗o(X1(1), R) M∗o1(Σ(1), R) M∗o(X2(1), R)
r∗o1

r∗o2 (7)

We adopt the conventions M∗o0(Y,R) =M∗(Y,R), M∗o1(Y,R) =M∗o(Y (1), R), and define

L∗oji
:= r∗oji

(
M∗oj (Xi, R)

)
for i ∈ {1, 2}, j ∈ {0, 1}, and ∗ ∈ {∅, [}. Set C∗oj (X) := L∗oj1

∩ L∗oj2
.

Proposition 3. 1. When R is algebraic and reductive, C[o(X) is the representation variety Hom(π1(X), R).

2. If R is a complex semisimple Lie group (e.g SU(2) or SL2(C)), then M∗oj (Σ, R) is a symplectic
manifold, the L∗oji

are Lagrangian submanifolds, and C∗oj (X) is a d–critical locus.

Joyce [11] originally introduced the notion of d–critical loci, which provides a framework to understand
complex Lagrangian intersections as a divisor of some derived geometric object. At least for now, we will
not say any more about d–critical loci.

When R = SU(2), the Atiya–Floer conjecture states that the Instanton Floer Homology of X is isomor-
phic to the Lagrangian Floer homology of the pair

(
L[1, L

[
2

)
. When R = SL2(C), Abouzaid and Manolescu

identify a perverse sheaf of vanishing cycles P •
L[

oj1
,L[

oj2

, on C[×j (X) [1], which is given by Bussi’s general con-

struction of perverse sheaves on complex Lagrangian intersections [4]. In particular, the hypercohomology
groups

H(P •
L[

oj1
,L[

oj2

)

are SL2(C) Floer cohomological invariants of X. The non–compactness of SL2(C) is an obstruction to
defining Lagrangian Floer homology directly via Gauge theory; nevertheless, it is conjectured that the dual of
such a Floer homology would be isomorphic to H(P •

L[
oj1
,L[

oj2

). By using different complex semisimple structure

groups, the general technique of identifying perverse sheaves on Lagrangian intersections is anticipated to
also provide cohomological dual groups to Heegaard Floer Homology and Knot Floer Homology.

2.1 Arithmetic Floer Cohomology

Keeping with the notation in the Introduction, in this section we ellaborate upon Theorem 1. The injective
maps OK → K → Kv and OK → OV [v−1] induce open étale morphisms Sv → SpecK → X and Xv → X.
Similarly, the closed immersion Specκv → X and the natural inlusion OK → Ov induce a closed étale
morphism Xv → X. All together one obtains the familiar open–closed (◦–•) decomposition in the étale site:

Xv ◦−→ X
•←− Xv

The precise formalism still needs to be worked out, but by appealing to faithfully flat (étale) descent and
the above decomposition we write

X = Xv ∪Kv Xv (8)

One interprets the formal neighborhood Xv as a “handlebody” around the prime v, while Xv is akin to a
knot complement. let R ∈ Sh(X). Eventually one would like to choose R ∈ Sh∇(X̃), where X̃ is some étale
or syntomic cover of X and the connection ∇ : R → Ω1

X̃/X
⊗OX R is either the Gauss–Manin connection

8



or some integral connection coming from a convergent filtered isocrystal over the Witt ring W (OK/pv), but
for now we do not make any such assumption.

The standard method for defining Floer (co)homology is to first realize the relevant geometric spaces as
Lagrangian submanifolds of some ambient symplectic manifold (e.g L[oj1

and L[oj2
inM[

oj (Σ, R) in section 2).

When the Lagrangian intersection C(X) is algebraic or complex-analytic, one can identify a perverse sheaf
of vanishing cycles on C(X) [4]. The hypercohomology of this complex gives the Floer cohomology of the
symplectic manifold. In the arithmetic scenario, while Kim notes that “the underlying geometric foundation
still needs to be worked out,” it seems likely that one can identify an étale perverse sheaf of vanishing cycles
P•
X,S on the arithmetic Lagrangian intersections described in the introduction and below, and then pass to

the hypercohomology H(P•
X,S). The first steps towards this possibility would ideally involve appealing to

known results; however, one may also need to develop a p–adic analogue for Bussi’s construction.
Continuing on with the justification for Theorem 1, suppose πS is crystalline at all v | p and let

T ∗(1)R be as before. Choose c̃ ∈ H1(πS , R) and let c be its in H1(πS , R) under the split projection
map H1(πS , T

∗(1)R) → H1(πS , R). The tangent space Tc̃H
1(πS , T

∗(1)R) can be computed using the Lie
algebra formalism, independently of the underlying geometric foundation, as

Tc̃H
1(πS , T

∗(1)R) ∼= H1(πS , L(c)∗(1)× L(c)) ∼= H1(πS , L(c)∗(1))×H1(πS , L(c))

The same formula above is true if we replaced c̃ by a cocycle c̃v ∈ H1(πv, T
∗(1)R). Local Tate duality then

implies
H1(πv, L(cv)

∗)×H1(πv, L(cv)) ∼= H1(πv, L(cv))
∗ ×H1(πv, L(cv))

So Tc∗vH
1(πv, T

∗(1)R) has the structure of a symplectic vector space with symplectic form

ωv((f, c), (f
′, c′)) = f · c′ − f ′ · c

where · is the inner product structure on Tc∗v . Summing over all v ∈ S gives a symplectic form on∏
v Tc∗vH

1(πv, T
∗(1)R). Abstractly, it follows that

∏
vH

1(πv, T
∗(1)R) =

∏
vM(Kv, T

∗(1)R) is a Qp–
analytic symplectic variety. Furthermore, Poitou–Tate duality implies locS(H1(πS , T

∗(1)R)) is a Lagrangian
subvariety. Lastly, observe if c̃v is crystalline or unramified, then H1

f (πv, L(cv)
∗(1)) × H1

f (πv, L(cv)) and

H1(πv/Iv, (L(cv)
∗(1))Iv ) ×H1(πv/Iv, (L(cv))

Iv ) are Lagrangian inside H1
ét(πv, L(cv)

∗(1)) ×H1
ét(πv, L(cv)).

Hence ∏
v∈S
M(Xv, T

∗(1)R) ⊂
∏
v

H1(Kv, T
∗(1)R)

is a Lagrangian subvariety. Define

C(X,S;T ∗(1)R) =M(XS , T ∗(1)R)×∏
vM(Kv,T∗(1)R)

∏
v

M(Xv, T
∗(1)R)

To conclude this discussion we note that the problem of realizing C(X) as a Lagrangian intersection
inside a symplectic manifold is solved whenever R is complex–semisimple. If R is also connected (e.g SU(2)6

or SL2(C)), then the absence of a Galois action implies that R is isomorphic to its Langlands dual. Kim
points out that

In the arithmetic setting, the self–dual nature of R is harder to arrange due to the existence
of Tate twists.

To reconcile this issue, consider the case R = GLn(E). Then to achieve self–duality one could replace
M(XS , R) with M(XS [ζp∞ ], R) = H1

ét(π
∞
S , R), where

π∞S = πét1 (Spec(O[S−1, ζp∞ ])

is the étale fundamental group of the affine scheme defined by the cyclotomic extension of O[S−1]. It would
be interesting to study what role perfectoid geometry plays in these considerations.

6Recall that SU(2) is isomorphic (in Gp) to the group of unit norm quaternions H×, hence diffeomorphic (in Top) to S3
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Routes Towards Arithmetic Floer Homology

This section should not necessarily be taken as seriously as the last; however, it is psychologically pleasing that
a reasonable notion of p–adic Floer homology likely exists. We first observe that the analogy between complex
analytic spaces and adic spaces should actually be interpreted as an analogy between almost complex-anaytic
spaces and adic spaces. Indeed,

Proposition 4. An almost complex manifold X is globally complex if and only if the complex structures
defined on TX glue together to a complex structure on X.

If complex conjugation is “Frobenius as the prime ∞,” then the above result stands in stark contrast to
what is known in p–adic geometry; namely, that Frobenius at finite places never “jumps out” of its chart of
definition. Hence Frobenius at finite places can only glue to a global Frobenius map, and not a morphism.

To define a p–adic Floer–type homology theory, we fist need to extend the notion of pseudoholomorphicity
in definition 4 to situations in p–adic geometry. A–priori this is more delicate since the uniforization theory
of p–adic curves is quite different than that of complex curves. The latter is well–known and summarized in
Theorem 5; the former is the subject of [17].

Theorem 5. Let D be a complex curve of (geometric) genus g. Then D admits a uniformization by a

complex analytic manifold D̃ given by

D̃ :=


P1
C g = 0

A1
C g = 1

H2 g ≥ 2

The upshot is that there are several p–adic generalizations of the complex–analytic disk. The following list
describes some potential routes of study towards p–adic analogue(s) of definition 4 using familiar machinery.
Unless stated otherwise, X denotes some p–adic geometric object7 defined over a mixed characteristic field
Kv that is complete with respect to a v–adic nonarchimedian valuation. Briefly, the list below is an attempt
to describe the moduli problem of T –Frobenius equivariant morphisms of p–adic curves, where T denotes a
sheaf on X.

1. Let T be a sheaf on X isomorphic to either the affinoid tangent sheaf TDv [2][§9] or some D–module
such as D∞Dv from [26]. We define a smooth (resp. étale, syntomic) pseudo-rigid-analytic disk D∗v to
be a sm (resp. ét, syn) T -Frobenius equivariant map φ∗ : Dv → X, where ∗ ∈ {sm, ét, syn}. In other
words, a map from the rigid analytic 2–disk Spm(T 2(Kv)) such that

FrX ◦ φ̃∗ = φ̃∗ ◦ FrDv ,

Fr is the Frobenius endomorphism, and φ∗ is the pushforward of T . Given x, y ∈ X, π̃2,rig(x, y)∗

denotes the collection of all pseudo-rigid-analytic curves D∗v in X with marked points x and y. If
D∗v and C∗v are pseudo-rigid-analytic curves that define the same object in D(∆∗(X)) – the derived
category of simplicial ∗–objects over X (i.e D∗v and C∗v are ∗–homotopic) – then we write D∗v ∼ C∗v .
Equivalence defined via homotopy categories are well–defined equivalence relations, so passing to the
quotient space

π̃2,rig(x, y)∗ → π2,rig(x, y)∗ =: π̃2,rig(x, y)∗/∼

yields the moduli space πrig2 (x, y)∗, which classifies ∗–homotopy types of pseudo-rigid-analytic curves
in X with marked points x and y. One can similarly construct the space of stable–homotopy classes
of pseudo-rigid-analytic curves, denoted πstab

2,rig(x, y)∗, using stable–homotopy equivalence.

2. A–posteriori there is no reason to restrict attention to rigid analytic spaces. In fact, the maximal spec-
trum of Tate algebras suppresses the arithmetic structure coming from nontrivial primes in the base
fieldKv. We can also define the notion of a pseudo-Berkovich, pseudo-adic, and pseudo-perfectoid closed

7e.g a formal scheme, rigid analytic space, Berkovich space, adic space, v–adic analytic manifold, perfectoid space, etc
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disks by replacing the fundamental homological object Spm(Kv〈T1, T2〉) by SpB(Kv〈T 〉), Spa(Kv〈T 〉,Ov〈T 〉),
and Spa(Kv〈T

1
p∞ 〉,Ov〈T

1
p∞ 〉), respectively. We obtain families of moduli spaces

π2,rig(x, y)∗, π2,Berk(x, y)∗, π2,adic(x, y)∗, π2,Perf(x, y)∗ (9)

Where ∗ can in fact indicate any Grothendieck site G. We anticipate the existence of comparison
theorems between the above objects, much in the spirit of known comparison results between p–adic
cohomology theories. Given π2,Ξ(x, y)∗, where Ξ denotes some p–adic geometric model, we can try to
imitate equation 5 to define a boundary map

∂Ξ(x) :=
∑
y

′∑
φ∗∈π2,Ξ(x,y)∗

|µ(φ∗)/Kv| · y (10)

where Σ′ counts those pseudo-Ξ disks that are T -Frobenius equivariant. In classical Floer homology
theories, it is often exceptionally difficult to prove ∂2 = 0. I am not certain that equation 10 gives the
“right” definition, but this problem is considered to be of particular importance towards an arithmetic
Floer homology theory.

2.2 Adelic Solenoids & Modular Braids

Let Bn and Pn denote the braid group on n strands and the pure braid group on n strands, respectively.
Recall there exists a short exact sequence

1→ Pn → Bn → Sn → 1

Juyumaya and Lambropoulou define the (d, n)–modular framed braid group Fd,n := (Z/dZ)
noBn [12]. The

p–adic framed braid group is the inverse limit

FZp := lim
←
Fpr,n

Geometrically, p–adic framed braids are p–braids whose framing is a p–adic integer. Similarly one may define
the adelic framed braid group FA =

∏
p FZp .

Proposition 6. Let Σ be a solenoid with a fixed embedding σ : Σ → S3. Then there exists an adelic
braidword ω ∈ FA such that Σ is the “closure” of ω.

By the “closure” of an adelic braid, we mean that each knotted layer Ki in Σ is the closure of the braid
at the ith layer of ω.

TBC...

3 Elliptic curves, Alexander polynomials and zeta functions

In this section we recall some basic facts about the Dirichlet L–function attached to an elliptic curve defined
over a Q, and then compare the story to that of the Lefschetz zeta function associated to a knot (in S3).

Let E/Q be an elliptic curve of conductor N , p be a fixed prime, and 1E(p) =

{
1 p - N
0 p | N

be the trivial

character (mod N). Define t1(E) = 2 and tpn(E) = pn + 1− |E(Fpn)| for all n > 1.

Definition 7. The counting zeta function of E at p is

Zp(E, z) = exp

( ∞∑
n=1

tpn(E)

n
zn

)

11



The well-known functional fact about Zp(E, z) is that

Zp(E, z) =
(
1− tp(E)z + 1E(p) · pz2

)−1
(11)

which is easily shown by taking the logarithmic derivative.

Definition 8. The L–function of E is defined as

L(E, s) :=
∏
p

Zp(E, p
−s)

Remark 5. The significance of L(E, s) is that it encodes the imformation {tp(E)} for all primes p. It can be
shown that L(E, s) converges absolutely on a right–half plane in C. A holy–grail of modern number theory
is to understand what happens at s = 1.

Proposition 7. L(E, s) admits a summation formula

L(E, s) =
∑
n≥1

ann
−s

such that a1 = 1, ap = tp(E), api = apapi−1 −1E(p)papi−2 for i ≥ 2, and amn = aman for relatively prime m
and n. Conversely, given any integer sequence {ai}i≥1 satisfying the aforementioned properties, the Dirichlet
series

∑
n≥1 ann

−s admits an Euler product formula∑
n≥1

ann
−s =

∏
p

(
1− app−s + χ(p) · p1−2s

)−1

Proof. This result is an application of the unique factorization of Z and a basic exercise in algebraic manip-
ulation, so we omit the details.

Definition 9. Let X be a manifold such that H∗(X,Q) is a finite dimensional Q–vector space. For any
continuous map t : X → X one can define a Lefschetz zeta function for t by the formula

ζt(z) := exp

( ∞∑
n=1

Λ(tn)

n
zn

)

where Λ(t) =
∑dim X
i=0 (−1)iTr(t∗i : Hi(X,Q)→ Hi(X,Q)) is the Lefschetz number of t.

One can also define a relative and restricted versions the Lefschetz zeta function as follows.

Definition 10. Let X and P be a manifolds such that H∗(P,Q) and the relative homology H∗(M,P ;Q) are
finite dimensional Q–vector spaces. For any continuous map t : (M,P ) → (M,P ) we can define a relative
zeta function by

ζt;P (z) := exp

( ∞∑
n=1

ΛM ;P (tn)

n
zn

)
where ΛM ;P (t) =

∑dim M
i=0 (−1)iTr(t∗i : Hi(M,P ;Q)→ Hi(M,P ;Q)) is the relative Lefschetz number of t.

The restricted Lefschetz zeta function ζt|P is given by

ζt|P (z) := exp

( ∞∑
n=1

Λ((t | P )n)

n
zn

)

where Λ(t | P ) =
∑dim P
i=0 (−1)iTr((t | P )∗i : Hi(P,Q)→ Hi(P,Q)) is the restricted Lefschetz number.

12



The utility of these definitions is illustrated by the following Proposition, which is Lemma 10 of [21].

Proposition 8. If at least two of the groups H∗(X,Q), H∗(P,Q), and H∗(X,P ;Q) are finite dimensional,
then ζt, ζt;P , and ζt|P are defined and

ζt(z) = ζt;P (z)× ζt|P (z)

Proof. The long exact sequence on relative homology

· · · → Hi(P )→ Hi(X)→ Hi(X,P )→ · · ·

gives
Λ(t) = ΛM ;P (t) + Λ(t | P )

The formula in the proposition immediately follows.

Noguchi uses the product formula in Propoition 8 to prove:

Theorem 9 (Noguchi). Let X be a compact connected n–manifold, X∞ an orientable infinite–cyclic covering
of X with dimQH∗(X∞,Q) <∞, and t : (X∞, ∂X∞)→ (X∞, ∂X∞) a proper continuous map of degree λ 6= 0
with respect to H∗cpt(X∞; ∂X∞,Q). If n is odd, then the Lefschetz zeta functions ζt and ζt|∂X∞ satisfy the
functional equation

ζt(
1
λz )2

ζt|∂X∞( 1
λz )

= λχz2χ ζt(z)
2

ζt|∂X∞(z)

where χ is the Euler characteristic of X∞. In particular, when ∂X∞ = ∅ one has

ζt(
1

λz
) = ±λ

χ
2 zχζt(z)

Corollary 10. When X∞ is the infinite cyclic covering of a (tame) knot complement X = S3\K and t is
the monodromy map induced by a generator τ for Gal(X∞/X), then

ζt(z) =
1

∆K(0)

∆K(z)

1− z

where ∆K(t) is the Alexander polynomial of K, normalized so that all powers of z are positive and ∆K is of
minimal degree.

TBC...
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